microEnable IV AD4-LVDS

Product Profile of microEnable IV AD4-LVDS
Scalable, intelligent frame grabber for highest requirements on image acquisition and preprocessing

- High LVDS compliance combined with modern technology
- PCIe technology
- Modern software environment
- Professional Machine Vision SDK support
- DMA900 / up to 900 MB/s PCIe Data bandwidth (PCle x4)
- Easy migration path to Camera Link
- Broad support of Third-party software interfaces
- Versatile application and industry usage
- Flexible and extensible model series
- Long cable length
Technical Description

microEnable IV frame grabber with 2* LVDS ports (MDR36) for up to 2*8bit greyscale cameras, 256MB DDRRAM acquisition buffer, PCIe x4 (quad lanes), PC-interface. Documentation, SDK, supporting software tools, functional libraries with acquisition applets and drivers in delivery.

<table>
<thead>
<tr>
<th>Article Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Name</td>
</tr>
<tr>
<td>Match Code</td>
</tr>
<tr>
<td>Article No.</td>
</tr>
<tr>
<td>Category</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
</tr>
<tr>
<td>On Board Memory</td>
</tr>
<tr>
<td>Processor Board Interface</td>
</tr>
<tr>
<td>Data Forwarding</td>
</tr>
<tr>
<td>I/O Module Interfaces</td>
</tr>
</tbody>
</table>
Camera Interface

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>LVDS</td>
</tr>
<tr>
<td>Configurations</td>
<td>Dual-LVDS, 8bit</td>
</tr>
<tr>
<td>Connectors</td>
<td>2* MDR36</td>
</tr>
<tr>
<td>Cable Length</td>
<td>standard conform</td>
</tr>
<tr>
<td>Power Output</td>
<td>n/a</td>
</tr>
<tr>
<td>Camera Support</td>
<td>Area scan camera, line scan camera</td>
</tr>
<tr>
<td>Sensor Type</td>
<td>Grayscale sensor, CFA sensor (Bayer), RGB sensor</td>
</tr>
<tr>
<td>Sensor Resolution</td>
<td>16k*64k (area scan sensor), 16k (line scan sensor)</td>
</tr>
<tr>
<td>Bit Depth</td>
<td>8-16-bit (grayscale), 24-48-bit (color)</td>
</tr>
<tr>
<td>Data Bandwidth</td>
<td>n/a</td>
</tr>
<tr>
<td>Test Environment</td>
<td>Camera Simulator</td>
</tr>
</tbody>
</table>

Controls and General Purpose I/Os

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger Board GPIO Interfaces</td>
<td>TTL Trigger board: 8 TTL in and 8 TTL out, max. input freq: 20 MHz; Opto Trigger boards (options): Up to 8 single-ended opto-coupled in (4.5V-28V) or 4 differential opto-coupled in (4.5-28V, RS422 compliant); 8 opto-coupled out (4.5V-28V), max. input freq: 1 MHz</td>
</tr>
<tr>
<td>On-board GPIO Interface</td>
<td>n/a</td>
</tr>
<tr>
<td>On-board Front GPIO Interface</td>
<td>n/a</td>
</tr>
<tr>
<td>Synchronization and Control</td>
<td>Configurable Trigger System supporting several trigger modes (grabber controlled, external trigger, gated, software trigger) and shaft encoder functionality with backward compensation, Multi-Camera-Synchronization</td>
</tr>
<tr>
<td>GPIO Summary</td>
<td>8in/8out (max.), TTL or opto-coupled</td>
</tr>
</tbody>
</table>
Host PC Interface

<table>
<thead>
<tr>
<th>PC Bus Interface</th>
<th>PCI Express x4 (Gen1), DMA900</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC Bus Interface</td>
<td>Up to 900 MB/s (sustainable)</td>
</tr>
</tbody>
</table>

Physical and Environmental Information

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>PCIe Standard height, half length card: 167.64 mm length x 111.15 mm height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approximate Weight</td>
<td>162 g</td>
</tr>
<tr>
<td>Power Consumption /</td>
<td>12V, 1000 mA</td>
</tr>
<tr>
<td>Power Source</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>0 - 60°C (32°F - 131°F)</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-50 - 80°C (-58°F - 176°F)</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>pending</td>
</tr>
<tr>
<td>MTBF</td>
<td>on request</td>
</tr>
<tr>
<td>Compliances</td>
<td>CE, RoHS, WEEE, REACH</td>
</tr>
</tbody>
</table>

Software

<table>
<thead>
<tr>
<th>Software Drivers</th>
<th>Windows 7 / 8 (32-bit), Windows 7 / 8 (64-bit), Linux 32-bit, Linux 64-bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Tools</td>
<td>microDisplay (Acquisition control and viewer), microDiagnostics (Service tool), GenICam Explorer (Camera configuration tool), SDK, Documentation, Device Drivers</td>
</tr>
<tr>
<td>Software API</td>
<td>Silicon Software SDK, .net interface</td>
</tr>
<tr>
<td>FPGA Programming</td>
<td>not programmable</td>
</tr>
<tr>
<td>BV Software Compatibility</td>
<td>Common Vision Blox, Halcon, LabView, VisionPro, MIL, Sapera, Streampix, SAL3D, 3D Express, Heurisko</td>
</tr>
</tbody>
</table>
Datasheet
microEnable IV AD4-LVDS

VisualApplets

Often, the goal of industrial image processing applications is to find 100% of all errors and to work in high resolution to identify even the smallest details, to acquire images in the shortest time possible, to detect defects and to forward the results. These tasks frequently require more computing power than a “standard system” can offer. There are solutions that begin the image processing right after the acquisition process but before the camera images are written to storage and taken over by the software.

The processors used in such solutions are designed for image processing. They process data with extremely high parallelism, thus guaranteeing the necessary data throughput. On all its frame grabbers, Silicon Software uses this FPGA technology. In the A-Series (frame grabbers with expanded image recording functions), we have already programmed important and valuable functions that can be activated via the configuration software. For V-Series models (programmable frame grabbers for individual image processing functions), we have released the FPGA for you, as our customer, for individual programming.

To ease your entry into hardware programming, we have developed software that enables you to graphically program FPGAs using data flow diagrams. This program is called VisualApplets.

VisualApplets makes it possible for you to write complex applications on your own, even after a short time, for the special processor. Even without hardware programming expertise. The program is geared toward both software programmers and application engineers. Program in the language of image processors without using hardware code. The simulation works with a rapid image output with which you can immediately check your algorithms and image processing steps.

We have built in many automatic correction functions and generators so that you can concentrate on your actual work. And should an error sneak in, you are immediately made aware of it in color, and solution approaches are offered to you.

An SDK output generates executable example code in C/C++, listing all the parameters (hardware register), in order to control the image processing application out of your software.

What does real time mean? By using FPGA technology, you have a deterministic relationship to the application that works after the start with a constant delay (latency) that is determined by the image processing algorithm. In most cases, this latency lies in the micrometer range.
VisualApplets (ctd.)

VisualApplets simplifies image processing programming for you. You can fall back on libraries with over 200 operators. You can create your own libraries for commonly used image processing steps or import them from available hardware code (EDIF over VHDL/Verilog).

With VisualApplets, you acquire a powerful tool that offers you new ways forward for your system solution.

VisualApplets is available for Silicon Software V-Series frame grabbers, including VisualApplets-compatible cameras and imaging devices.

V-Series frame grabbers are already pre-licensed for use with VisualApplets in the basic version. VisualApplets offers several versions of its programming environment; additionally, you can license further operator libraries to expand the range of functions.

In 2006, VisualApplets was honored with the international Vision Award. It has been successfully used in the most diverse industrial applications, both using frame grabbers and in VisualApplets-compatible industrial cameras and image processing devices.
Technical Setup

Board/Housing Measurement

Height: 111.15 mm
Length: 167.64 mm
Width: no width
Mounting: PCIe slot
Screw Mounting: no screw mounting
Protection Class: no class defined
Material: PCB, RoHS compliant
Screws: no screws

PRODUCT VARIATIONS

microEnable IV AD4-LVDS

PRODUCT EXTENSIONS

Opto-coupled Trigger Board – mE5, Match Code: TRG-OPT05, Art.No.: 155010
TTL Trigger Board – mE4, Match Code: TRG-TTL4, Art No.: 101256

ORDERING INFO

• microEnable IV AD4-LVDS, mE4-AD4LV, Art No.: 101710
We reserve the right of technical modifications, changes of the equipment features and adaptations to current specification. Typing and setting mistakes and other errors cannot be excluded and are therefore also reserved. In recent publications availability, also by technical generation, previous cease to be valid.