microEnable IV AD4-CL

Product Profile of microEnable IV AD4-CL
Scalable, intelligent frame grabber for highest requirements on image acquisition and preprocessing

- All formats of Camera Link standard
- BayerHQe Quality (5x5)
- Image Enhancement by On-Board Noise Filter
- Shading Correction (Offset and Gain)
- DMA900 / up to 900 MB/s PCIe Data bandwidth (PCIe x4)
- Camera Simulator
- Broad support of Third-party software interfaces
- Versatile application and industry usage
- Flexible and extensible model series
- Robust and industrial FPGA Technology
Technical Description

microEnable IV frame grabber with 2* Camera Link ports (MDR26) for 2*BASE, 1*MEDIUM or 1*FULL (incl. 10-taps) configuration cameras, 256MB DDRRAM acquisition buffer, PCIe x4 (quad lanes) PC-interface. Documentation, SDK, supporting software tools, functional libraries with acquisition applets and drivers in delivery.

<table>
<thead>
<tr>
<th>Article Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Name</td>
</tr>
<tr>
<td>Match Code</td>
</tr>
<tr>
<td>Article No.</td>
</tr>
<tr>
<td>Category</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
</tr>
<tr>
<td>On Board Memory</td>
</tr>
<tr>
<td>Processor Board Interface</td>
</tr>
<tr>
<td>Data Forwarding</td>
</tr>
<tr>
<td>I/O Module Interfaces</td>
</tr>
</tbody>
</table>
Camera Interface

<table>
<thead>
<tr>
<th>Standard</th>
<th>Camera Link 2.0, up to 85 MHz Pixel Clock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configurations</td>
<td>CL-base, CL-dual base, CL-medium, CL-full, CL-deca (80bit) including non-Standard formats</td>
</tr>
<tr>
<td>Connectors</td>
<td>2x MDR26</td>
</tr>
<tr>
<td>Cable Length</td>
<td>standard conform</td>
</tr>
<tr>
<td>Power Output</td>
<td>n/a</td>
</tr>
<tr>
<td>Camera Support</td>
<td>Area scan camera, line scan camera</td>
</tr>
<tr>
<td>Sensor Type</td>
<td>Grayscale sensor, CFA sensor (Bayer), RGB sensor</td>
</tr>
<tr>
<td>Sensor Resolution</td>
<td>16k*64k (area scan sensor), 16k (line scan sensor)</td>
</tr>
<tr>
<td>Bit Depth</td>
<td>8-16-bit (grayscale), 24-48-bit (color)</td>
</tr>
<tr>
<td>Data Bandwidth</td>
<td>850 MB/s</td>
</tr>
<tr>
<td>Test Environment</td>
<td>Camera Simulator</td>
</tr>
</tbody>
</table>

Controls and General Purpose I/Os

<table>
<thead>
<tr>
<th>Trigger Board GPIO Interfaces</th>
<th>TTL Trigger board: 8 TTL in and 8 TTL out, max. input freq: 20 MHz: Opto Trigger boards (options): Up to 8 single-ended opto-coupled in (4.5V-28V) or 4 differential opto-coupled in (4.5-28V, RS422 compliant): 8 opto-coupled out (4.5V-28V), max. input freq: 1 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-board GPIO Interface</td>
<td>n/a</td>
</tr>
<tr>
<td>On-board Front GPIO Interface</td>
<td>n/a</td>
</tr>
<tr>
<td>Synchronization and Control</td>
<td>Configurable Trigger System supporting several trigger modes (grabber controlled, external trigger, gated, software trigger) and shaft encoder functionality with backward compensation, Multi-Camera-Synchronization</td>
</tr>
<tr>
<td>GPIO Summary</td>
<td>8in/8out (max.), TTL or opto-coupled</td>
</tr>
</tbody>
</table>
Host PC Interface

<table>
<thead>
<tr>
<th>PC Bus Interface</th>
<th>PCI Express x4 (Gen1), DMA900</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC Bus Interface Performance</td>
<td>up to 900 MB/s (sustainable)</td>
</tr>
</tbody>
</table>

Physical and Environmental Information

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td>PCIe Standard height, half length card: 167.64 mm length x 111.15 mm height</td>
</tr>
<tr>
<td>Approximate Weight</td>
<td>123 g</td>
</tr>
<tr>
<td>Power Consumption / Power Source</td>
<td>12V, 1000 mA</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>0 - 40°C (32°F - 131°F), (optional -60°)</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-50 - 80°C (-58°F - 176°F)</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>pending</td>
</tr>
<tr>
<td>MTBF</td>
<td>797,000 h</td>
</tr>
<tr>
<td>Compliances</td>
<td>CE, RoHS, WEEE, REACH</td>
</tr>
</tbody>
</table>

Software

<table>
<thead>
<tr>
<th>Software Drivers</th>
<th>Windows 10 / 8 / 7 (32-Bit), Windows 10 / 8 / 7 (64-Bit), Linux 32-Bit, Linux 64-Bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Tools</td>
<td>microDisplay (Acquisition control and viewer), microDiagnostics (Service tool), GenICam Explorer (Camera configuration tool), SDK, Documentation, Device Drivers</td>
</tr>
<tr>
<td>Software API</td>
<td>Silicon Software SDK, .net interface</td>
</tr>
<tr>
<td>FPGA Programming</td>
<td>not programmable</td>
</tr>
<tr>
<td>BV Software Compatibility</td>
<td>Common Vision Blox, Halcon, LabView, VisionPro, MIL, Sapera, Streampix, SAL3D, 3D Express, Heurisco</td>
</tr>
</tbody>
</table>
VisualApplets

Often, the goal of industrial image processing applications is to find 100% of all errors and to work in high resolution to identify even the smallest details, to acquire images in the shortest time possible, to detect defects and to forward the results. These tasks frequently require more computing power than a “standard system” can offer. There are solutions that begin the image processing right after the acquisition process but before the camera images are written to storage and taken over by the software.

The processors used in such solutions are designed for image processing. They process data with extremely high parallelism, thus guaranteeing the necessary data throughput. On all its frame grabbers, Silicon Software uses this FPGA technology. In the A-Series (frame grabbers with expanded image recording functions), we have already programmed important and valuable functions that can be activated via the configuration software. For V-Series models (programmable frame grabbers for individual image processing functions), we have released the FPGA for you, as our customer, for individual programming.

To ease your entry into hardware programming, we have developed software that enables you to graphically program FPGAs using data flow diagrams. This program is called VisualApplets.

VisualApplets makes it possible for you to write complex applications on your own, even after a short time, for the special processor. Even without hardware programming expertise. The program is geared toward both software programmers and application engineers. Program in the language of image processors without using hardware code. The simulation works with a rapid image output with which you can immediately check your algorithms and image processing steps.

We have built in many automatic correction functions and generators so that you can concentrate on your actual work. And should an error sneak in, you are immediately made aware of it in color, and solution approaches are offered to you.

An SDK output generates executable example code in C/C++, listing all the parameters (hardware register), in order to control the image processing application out of your software.

What does real time mean? By using FPGA technology, you have a deterministic relationship to the application that works after the start with a constant delay (latency) that is determined by the image processing algorithm. In most cases, this latency lies in the micrometer range.
VisualApplets (ctd.)

VisualApplets simplifies image processing programming for you. You can fall back on libraries with over 200 operators. You can create your own libraries for commonly used image processing steps or import them from available hardware code (EDIF over VHDL/Verilog).

With VisualApplets, you acquire a powerful tool that offers you new ways forward for your system solution.

VisualApplets is available for Silicon Software V-Series frame grabbers, including VisualApplets-compatible cameras and imaging devices.

V-Series frame grabbers are already pre-licensed for use with VisualApplets in the basic version. VisualApplets offers several versions of its programming environment; additionally, you can license further operator libraries to expand the range of functions.

In 2006, VisualApplets was honored with the international Vision Award. It has been successfully used in the most diverse industrial applications, both using frame grabbers and in VisualApplets-compatible industrial cameras and image processing devices.
Datasheet
microEnable IV AD4-CL

Technical Setup

Board/Housing Measurement

- Height: 111.15 mm
- Length: 167.64 mm
- Width: no width
- Mounting: PCIe slot
- Screw Mounting: no screw mounting
- Protection Class: no class defined
- Material: PCB, RoHS compliant
- Screws: no screws

PRODUCT VARIATIONS

- microEnable IV AD4-CL (LVTTL)
- microEnable IV AD4-PoCL
- microEnable IV AD4-PoCL (LVTTL)
- microEnable IV VD4-CL
- microEnable IV VD4-CL (LVTTL)
- microEnable IV VD4-PoCL
- microEnable IV VD4-PoCL (LVTTL)

PRODUCT EXTENSIONS

- Opto-coupled Trigger Board – mE5, Match Code: TRG-OPTO5, Art.NO.: 155010
- TTL Trigger Board – mE4, Match Code: TRG-TTL4, Art No.: 101252

ORDERING INFO

- microEnable IV AD4-CL, mE4-AD4CL, Art No.: 101640